A Robust Quadratic Discriminant Function Using a Shrinkage Estimator of Variance Matrix
نویسندگان
چکیده
منابع مشابه
Asymptotic properties of a robust variance matrix estimator for panel data when T is large
I consider the asymptotic properties of a commonly advocated covariance matrix estimator for panel data. Under asymptotics where the cross-section dimension, n, grows large with the time dimension, T, fixed, the estimator is consistent while allowing essentially arbitrary correlation within each individual. However, many panel data sets have a non-negligible time dimension. I extend the usual a...
متن کاملShrinkage simplex-centroid designs for a quadratic mixture model
A simplex-centroid design for q mixture components comprises of all possible subsets of the q components, present in equal proportions. The design does not contain full mixture blends except the overall centroid. In real-life situations, all mixture blends comprise of at least a minimum proportion of each component. Here, we introduce simplex-centroid designs which contain complete blend...
متن کاملA Two-Phase Robust Estimation of Process Dispersion Using M-estimator
Parameter estimation is the first step in constructing any control chart. Most estimators of mean and dispersion are sensitive to the presence of outliers. The data may be contaminated by outliers either locally or globally. The exciting robust estimators deal only with global contamination. In this paper a robust estimator for dispersion is proposed to reduce the effect of local contamination ...
متن کاملA New Approximation Method of the Quadratic Discriminant Function
For many statistical pattern recognition methods, distributions of sample vectors are assumed to be normal, and the quadratic discriminant function derived from the probability density function of multivariate normal distribution is used for classification. However, the computational cost is O(n) for n-dimensional vectors. Moreover, if there are not enough training sample patterns, covariance m...
متن کاملA robust wavelet based profile monitoring and change point detection using S-estimator and clustering
Some quality characteristics are well defined when treated as response variables and are related to some independent variables. This relationship is called a profile. Parametric models, such as linear models, may be used to model profiles. However, in practical applications due to the complexity of many processes it is not usually possible to model a process using parametric models.In these cas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Japanese journal of applied statistics
سال: 1990
ISSN: 0285-0370,1883-8081
DOI: 10.5023/jappstat.19.33